首页> 外文OA文献 >Ranking of classification algorithms in terms of mean-standard deviation using A-TOPSIS
【2h】

Ranking of classification algorithms in terms of mean-standard deviation using A-TOPSIS

机译:根据平均标准偏差对分类算法进行排序   使用a-TOpsIs

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In classification problems when multiples algorithms are applied to differentbenchmarks a difficult issue arises, i.e., how can we rank the algorithms? Inmachine learning it is common run the algorithms several times and then astatistic is calculated in terms of means and standard deviations. In order tocompare the performance of the algorithms, it is very common to employstatistical tests. However, these tests may also present limitations, sincethey consider only the means and not the standard deviations of the obtainedresults. In this paper, we present the so called A-TOPSIS, based on TOPSIS(Technique for Order Preference by Similarity to Ideal Solution), to solve theproblem of ranking and comparing classification algorithms in terms of meansand standard deviations. We use two case studies to illustrate the A-TOPSIS forranking classification algorithms and the results show the suitability ofA-TOPSIS to rank the algorithms. The presented approach is general and can beapplied to compare the performance of stochastic algorithms in machinelearning. Finally, to encourage researchers to use the A-TOPSIS for rankingalgorithms we also presented in this work an easy-to-use A-TOPSIS webframework.
机译:在将倍数算法应用于不同基准的分类问题中,出现了一个难题,即如何对算法进行排名?在机器学习中,通常会多次运行算法,然后根据均值和标准差来计算统计量。为了比较算法的性能,采用统计检验非常普遍。但是,这些测试也可能存在局限性,因为它们仅考虑均值,而不考虑所得结果的标准差。在本文中,我们提出了一种基于TOPSIS(类似于理想解决方案的订单偏好技术)的所谓A-TOPSIS,以解决均值和标准差方面的排名和比较分类算法问题。我们使用两个案例研究来说明A-TOPSIS用于对分类算法进行排名,结果表明A-TOPSIS适用于对算法进行排名。本文提出的方法是通用的,可用于比较随机算法在机器学习中的性能。最后,为了鼓励研究人员使用A-TOPSIS进行排名算法,我们在这项工作中还介绍了一种易于使用的A-TOPSIS网络框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号